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Altltrlct-A practJcal method of analyzing a brace under repeated axial force IS presented. A closed-fonn
solutJOll has been denved for a bar of Ideal I-sectloll with bl-linear stress-strain relationship, and the soIutlOll
for the elastic-perfectly plaStiC bar shows good agreement WIth the exact soJutlOll by Nonaka For a bar of
arbitrary solid cross-section WIth pIeCewise linear stress-strain relationship, an incremental loId-displacement
relationslup has been obtained In an analytICal fonn The computed results agrees reasonably well with the
experimental results and With detailed finite element solUtIon

I. INTRODUCTION

A brace, one of the most important earthquake-resistant elements of a steel structure, is sub­
jected to alternately repeated axial forces by the earthquake. Because the initial rigidity and
strensth of the brace are much greater than those of the frame elements in a braced frame, it
is essential to study the accurate axial forceoodisplacement relationship of a single brace to in­
vestipte the elastic-plastic behavior of braced frames.

A number of theoretical investiptions of the hysteretic behavior of a finale brace have been
made in the last decade, and can be elassified into two catelories. The first approach is to obtain
analytical solutions usiftg the plastic hinge concept in which the material yiekti8g is concentrated
in a critical section[l-7}; and the second is to use a numerical method based on the one-- or two­
dimensional coatiDuum theory [8-12].

AItbouIh the plastic hiBge analysis can yield closed-form solutions on some simple problems,
because of the assumption of perfect plasticity, the inftuence of the Bauschinger's effect, the
strain hardening, and the reversal of plastic strain should be ignored. The reduction of the sec­
tional riJidity caused by the partial yielding is also ignored, which plays an important role on the
post~buckling behavior

The numerical continuum analysis can be conducted by introducing the apprppriate mathe­
matical model and the precise constitutive relationship. However, except for some simple prob­
lems, it takes much time to compute the complicated interactions between braces and frame
elements of a braced frame. The analysis requires solving simultaneous nonlinear equations so
many times that it involves the risk that the iterative procedure does not converge.

In this study, we developed a practical method of analysis of the hysteretic behavior of a
simply supported prismatic bar subjected to repeated axial force. The method holds reasonable
accuracy with much less computing time than is required by the numerical continuum analysis.
The bar is composed of two nonftexural straight segments and one elastic-plastic spring, whose
mechanical property depends on the moment-curvature relation UDder varying axial force. The
loadoodisplacement relationship is obtained in a simple form, based on the detailed stress-strain
relationship of the material.

2 ASSUMPTIONS

The general basic assumptions are: (1) the material is sufficiently dutile; (2) local instability
does not occur; (3) although change in geometry is taken into account, deflection is so small that
the square of the slope is negligibly small in comparison with unity.

The following idealizations are adopted: The simply supported bar of length 2L (Fig. la), is
idealized into a model (Fig. Ib) composed of an elastic-plastic spring aM two straight segments.
The relative rotation 29 of the spring is expressed by the curvature K of the midsection, which
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Fig I. Analytical model

is determmed by the axial force N and the bending moment M = - Nv of the midsection, as
follows:

(1)

where ~ is a constant, independent of the loading history or the slenderness of the bar.
This idealization may be recognized as the generalized Shanley's inodel[l3), and physically

corresponds to the assumption that the curvature of the midsection is distributed Wliformly over
the leDlth 2fL and that the remainina portions remain st:railht (Fia. Ie). £is estimated as £<:: 1/3
by which the total hysteretic bellavior under repeated axial force is evaluated most accurately,
This is discussed later.

A very short column does not buckle immediately when the axial compression attaiBs the
crush load; it plastically contracts to some extent without any lateral deftection. The axial force­
displacement relation bas a plastic plateau. Because the lenath of the plateau depends upon the
distribution of cross-sectional imperfections and can not be determined definitcly[l4), it is also
assumed that a compressed strailbt bar buckles when the compression reaches the Euler load, NE
or the current crush load. We exclude the case in which the bar·length is so short that the plastic
plateau plays an important role in the total hysteretic behavior.

3 BASIC RELATIONSHIPS

Defining nondimensional parameters of axial force N and bending moment M of the mid­
section (Fig. 2), as nsN/No. and msMIMo. the equilibrium of the half bar, along with eqn (I),
gives

m = -nk/ne (2)

where No is the limit load in pure tension, Mo is the limit moment in pure bendin&. bEl/Mole
is the nondimensional value of the curvature Ie of the midsection, and nc.E1/(fN~L2) is the ratio
of the elastic buckling load of the model to No where 13 is Youq's modulus and I is
the moment of inertia of the cross section. The ratio of the Euler load to No, nE = 1T

2El/(4NoL~,
is related to ne by ne =4/(ftr2)nE and, if £= 4/.".2, ne agree with nE'

Fig 2 Equl1lbnum of a half bar
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Equation (2) can be written incrementally, without neglecting higher order terms, as

dm = -{n dk +kdn +dn dk)/nco (3)

The definition of the stress resultants gives two incremental constitutive relationships at the
midsection,

Idn=Ade+aSdIe

dm=Sde+ldle (4)

where de. de /SO denotes the ratio of the axial strain increment de of the centroid to the initial
yield strain BO, and a l5 Z;/(Al) is a cross sectional parameter of sectional area A, plastic section

modulUS Zp, and 1. Values A.f '"" dA/A. S. f Y,"" dA/ZI' and j • f y2
,"" dA/1 are evaluated by

integrating the ratio,"" of the current tangent modulus of each fiber element to the Young's mod·
ulus, over the cross sectional area, where ydenotes the distance between each fiber element and
the centroid.

Eliminating dm from eqns (3) and (4), de and dn are written as simple functions of die:

where

de =C1 die +C~dk)2/(l +C die)

dn =(CIA +as) dk +C2A(dk)2/(l +Cdk)
(5)

C
I
=n) ~ akS ~ ", C

2
=_CI! +as, C = _A

kA +lieS leA + lieS leA + lieS

In the actual calculation, A. Sand I can be computedby dividing the midsectioa into a finite
nwaber of strip elements, asstmJiDa the uniform distribution of ,.,. in a strip. If we aJso ......
that the stress-straiD teJationslrip is piecewise linear, A, Sand I vary dilcretely with time aad
eqn (5) is valid for finite duration white A, Sand f remain constant, because the nOIlIinear term
is not neglected in eqn (3).

To carry out accurate step.by·step computation, it is necessary to trace each brancbina point
at which the stiffness distribution of the system changes. The nondimensional strain increment
of the jth fiber element of midsection and that of the straight segment, taking into account eqn
(4), are written as the functions of dk:

(6)

(7)

The necessary increment de of a certain fiber element, at which the fiber stiffness su~

sequently cbanaes (Fig. 3), is determined from the constitutive relationship and the strain history.
SubstitutiDg til into the left member of eqn (6) and solving it, the corresponding increment of the
DODCIimeDsioDal curvature dt is obtained. The optimum value of ilk can be determiDed after
examining aU 4f values for each fiber element of the midsection and the straiabt SClIIJIeR'ts.

The relative axial displacement, A, of the bar ends is given noncIimensionaDy by the sum of
the elastic-plastic extension of the bending portion and straight seaments, and the axial com·
ponent of the change in geometry:

(8)

IBB = ee, BR =(I-€)eR

80 =- 92/(2£0) = - a~/(211c)
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and all components are expressed mcrementally as

daB = ede, daR = (1-e) deR

daa=-a~/(2nc)(2k+dk) dk.
(9)

If the bar is composed of an ideal I-section with bi-linear stress-stram relationship (Fig. 4),
the closccl-form solution of load-displacemeDt relationship is obtained. In this case, e and k in
eqn (8) are expressed by the simple functions of n, according to tbe stress States of both flanges
(Table 1), where ef and ef denote the normalized plastic strains of eacb flao8e (Fig. 4b), p,°is
the strain hardening ratio, and eR is evaluated by n and the residual strain e~.

(n+1)/p,°-I: n-,...°e~<-l

er = n+(1-,...~e~: In-,...°e~I~1

(n-1)/,...o+l: n-,...°e~>1.

(10)

Therefore, tbe nondimensional axial displacement lj is expressed mterms of n, mcorrespondence
with values of ef, ef and e~. The general bysteretic behavior of a bar of Ideal I-section With bi­
linear stress-strain relationship (Fig. 5), is discussed in the Appendix.

4. RESULTS AND DISCUSSIONS
The present analysis can be compared with the exact solution by Nonaka{3] for the

elastic-perfectly plastic bar of ideal I-section (Fig. 6). e=1/3 is the value that makes the central
deftection of the model agree with that of a simply supported beam subjected to the concentrated
lateral load at the center, and ~ = 4/11'2 corresponds to the value that makes the elas~ bucklingload
of the model agree with the Euler load. In Fig. 6, n - lj is little dependent on the ~value at the mech­
anism state in either the compression or tension range, but the elastic recovery lines and the total
hysteretic behavior agree better with the exact solution for e=1/3. It does, however, give about
a 20% greater elastic buckling load than tbe Euler load for slender bars.

The validity of the present analysis depends greatly on the estimation of the evalue, and e
should be set to e= 1/3 because it gives a good estimation of the total hysteretic behaVIOr. The
mathematical appropriateness of this value will be discussed later.

The effect of the strain hardening is illustrated in Fig. 7. The bardeOlng algebraically increases
the loading capacity of stubby bars in the mechanism state, and has little effect on slender bars, as
nE is tess than uOlty.
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Table I. Deformabon charactensbCs for braces WIth varymg slate of stress

221

~E2

ELASTIC YIIlJIIIIG I. TlllSIOII

cue I

!:1 "'-
DC U _ ~O)(8~ - 8~)

~
2(0 + D)

c

8 _ D + (1 _ ~O)(8~ + 8~)/2

Cu8 II cue IV

• "'-
DfU - pO)(l + p08; - D)..

'" - 0..
i S Zp°(D

f
+ D)

! a!
8 __1_ ( 2D + U _ PO)(8P - 1) _

° 2 ° P.. DfU - P ) (1 + p 8
Z

- D).. } 8 - (0 - 1)/pO + 1
1 + pO 2 2 O(D

f
+ D)

cue III cue V

• ! It - -
DfU - ~o)(l - p08~ + D) DCU _ pO).. '" --..

ZpO(D
f

+ D) °

! i ).1 D
F

+D

~ I 8 __1_ { 2D + (1 _ pO)(8; + 1) +
02 ° PD

f
(l - p ) (1 - p 8

Z
+ D)

} 8 _ "'pO

I + pO ZpO(D
f

+ D)

The muhs of the st~by-step computation for abar of reetanau1ar cross section are compared
with those of the oae-dimensional finite element anaIysis[l2] (Fip. 8 and 9). Two types of
stress-strain relationsbips are assumed; one is the bi-Iinear type with hardenina modulus, 10-4XE
(r... lOa), which closely approximates the property of eJastic-perfeetly plastic material, and the
other is the piecewise linear type (Fig. lOb), which approximates the hysteretic behavior of mild
steel[lS] (Fig. 10e). Because the Bauscbinger's effect and the strain hardening are not taken into
account (Fig. 8), when the axial force attains its limit value No. the bar becomes straight and the
subsequent behavior takes the same pattern as the virgin state. Both curves agree well with each
other, although some difference is seen for the stubby bar, where the presentanalysis slightly over­
estimates the deterioration of the hysteresis loop.

Fisure 9 shows the results for. the piecewise linear constitutive relationship. Because of the

-1

Fig 5 TYPIcal behaVIor of ideal I-section
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Fig. 8 Comparislon between present analysis and finite element so/ution (E1astIc-perfec:tly plastic
stress-strain relatIOnship.)

effect of strain hardening, the bar does not recover its straight confiJuration even if the axial force
equals or becomes larger than No. The subsequent behavior difters greatly from that of the vqm
state, as the Bauschinaer's effect plays an important role. The bysteresis loop deteriontes with the
increase of loading cycles more slowly than in the case of Fia. 8. The present analysis sliPdy
underestimates the compression capacity as compared with the finite element solution.

The present analysis is in good agreement with the experimental results of Wakabayasbi It
al.116] (Fig. 11).

~ FURTHER REMARKS
The validity of the analysis presented here depends on the selection of the Evalue. Setting

E= 1/3, this analysis showed good agreement with the exact solution by Nonaka[4] for ideal 1­
section with elastic-perfectly plastic material, and with thedetailed one-dimensional finite element
analysis.

Those observations can be easily proved mathematically. According to Nonaka, the DOn­
dimensional axial displacement is made upof the followina components: the axial deformation at
the plastic hinge, 8", the elastic-plastic elongation of the otherportions, (It + 8~, and the axial com­
ponents of tbe change in ,eometry, 3' [4J. The definition of 31agrees with that of 3(see Appendix),
and 8' corresponds to 80 , Let us introduce a new deformation parameter: 8p -8R +8s - (It +8),
which corresponds to 8" in the exact solution.
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In the mechanism state in either the compression or tension rause. 8p and 80 are evaluated as

8p=-~~(1+~)
11" tn! 4"s

(11)

8 =-~ (1- lnl)2. (12)
G 1( Inl

For a slender bar. 80 dominates the other components. and for a stubby bar. nln8 takes a small
value; n - 8 at the mechanism does not depend so much on the value of ~.

The exact solution yields the following expression for the mechanism state.

8' = -If ncoth(j~(:))/ (j~(:J)

8'=- (1 ~~If {coth2(j~(~)) +coth (j~(:J)/ (j ~(:J)-1}.

(13)

(14)

Using the Taylor expansion for hyperbolic functions in eqns (13) and (14), we get

4nE 1-Inl { 1I'2n 1 ( 1(2n )' }8'=--.:2 1+--- -- +...
1( Inl 12n8 5 12118

(15:

2n (1- lnl)2 { 1 (1(2,.)2 }8B=_~ ~ 1+- -- -'"
11' Inl 5 12"E

(16
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If we set l = t/3. eqn (11) qrees with the first two terms of eqn (15), and eqn (12) ...... wiIh the
first term ofeqn (16). In theseequations the error introduced by negiectiDa the terms bilherthu the
second order is less than 2%. if "'liE <0.4.

The relationship between II~ and II® (F'ag. 5) is obtained by setting e - k = ef± 1 in Case I in
the Table:

(17)

The exact solution gives the relationship

( 1+~)1~(~:) coth (1~(~:))
= (1-~)1 ~(~:) coth (1 ~(~:)). (18)

Expanding both members in Taylor series, we get

( 1){ 'lT2n® 1('lT2n®)2 2(1T2n®))3 }1+ 1+---- -- +- -- _...
~ 12'11£ 5 12'11£ 35 12'11£

_( l){ 1I'2n@ 1(1T2n@)2 2(1TII<f»3 }- 1-:15 1+---- -- +- - -'"
n 12llE 5 12llS 35 1211£ • (19)

If we set ~ = 1/3, both members of eqn (17) agree with the first two terms of botb sides in eqn
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(9). Because the third terms of both members in eqn (19) almost cancel each otber. the error
produced by omitting the terms higher than the third order is less than 2%. if 11/116<0.7.

Although there remains concern that the elastic buckling load of the model is about 20% biBb­
er than the Euler load if £=l/3. it may become trivial when the unavoidable imperfections are
taken into account; the lack of straightness and the load eccentricity, for example. The initial cur­
vature k* =O.lV(nE) corresponds to the central deflection v=- (2L)/1200 and k* =O.2V(nE> to
v "" (2L)/600 The consideration of appropriate initial imperfections leads to a reasonable elastic
buckling load in this analysis (Fig. 12).

The elastic-plastic spring idealization mtroduced in this paper can be applied to the response
analysis[l8J. or to the problem with more complex boundary conditions[l9, 20]. In the former,
it dramatically reduces the computmg time for determinmg the incrementalload-displacement re­
lationship, and in the latter case, It requires the appropriate estimation of the length of the ben­
ding portion An assemblage of several spring-bar units enable us to develop the one-dimensional
fimte-element solution[12], whIch proved the validity of the present analysis.

6 CONCLUSION

The hysteritic axial force-displacement relationship of a simply supported bar underrepeated
axial loading is analysed using the modified Shanley's model. The closed-form solution is obtained
for the bar otideal I-section with bi·linear stress-strain relationship. For a bar ofarbitrary compact
section with a general piecewise linear stress-strain relationship, an analytical expression is also
derived for the incrementalload-displacement relationship.

By solvingfor a bar of ideal I-section, the axial displacement is expressed as simple functions of
the axial force. The functions do not include exponential or trigonometric functions as does the
exact solution by Nonaka, and the axial force is obtained as the solution of a cubic equation for
given axial displacement. The results for the bar with elastic-perfectly plastic material are in aood
agreement with those of the exact solution by Nonaka. The effect of the strain hardening can be
easily taken into account.

The incremental method gives optimum increments of deformation parameters anaJyticaDy
without the trial-and-error process and consequently takes much less computina time. The
computed results are in good agreement with the detailed finite element analysis and/or the
experimental results.
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APPENDIX

TYPIcal behaVIOr of uleal I -sectIOn
Let us consIder an example, an winch the bar IS at first subJected to~.~ from the straaght Vlfgm state over the

lmtaal yield lumt The behaVIor m thIS process Is~presented by the trace @-CJ)-~ in the n- 6 relationshIp (Fig 5 mtext)
When the loadmg dareCtllln IS reversed at state W and the bar IS subJected to compressIOn. the bar contracts WIthout lateral
deftectlOn untd the bucklang load IS attained The slender bar buckles elastICally at n =-lie, and enters mto the mechamsm
state under the combmed stress of bendang and compression after flange I ~f the mtd)ec~n ylelds mcompression However,
the stubby bar enters mto the mecbamsm state unmedaately at n =-I +1£°6, where 6 =6 - I is the nondimensiooal residual
displacement 1ft the same sense as e' deliJled in F'II. 3(b) in the text. In the case of n, = 05, -this process is denoted by the
trace <D-O>-~-Q) (F'1lI 5) In the mechanism state (<J>-~). the stress state of the midsection corresponds to Case III
(Table I) The plastIC strams of ftanae 2 of the midsection and the straagbt sellllents are ef = e~= S. and the normalized
stram eR of the straJlbt segnlents IS expressed according to the value of n,

\

n +(1 -/LOj8.

eR= (n +0/1£0-1 n,> I (AI)

Because we assumed that a too stubby bar IS to be excluded from the analYSIS, let us restrict the dISCUSSIon to the case
of ftf~ I

When the loadang dlfCctlOn IS reversed agam, at stage G) (Fig. 5), the bar behaves elastically, and eand k are expressed
as Case I (Table I) _Because ftange 2 of the mIdsection and the straight sclllllents remllln elastIC before and after the load
reversal, e~. e' • S. Normalized plastic...1tra1n of ftange 1 of the mtdsectlon ef which should utisfy the condition el
= e - k =t~ - I at load reversal pomt ~- IS obtamed'

ef= 2(n,,+n®) [n®{I- 1-1£° e~}+ll (A2)
(l + /Lo)(n® +n,) n® +ne

IncreaslDg the tenslOR force. n - 6 attams the poant ®, then flange I begins to YIeld m tenSIon Solvang for n m

'f 2(ne +n) [{I I-/LO~} I} A3
e =(l+/LO) (n+n,) n - n+n/ - ( )

nondllnenslooal axaal force n® at state ® IS obtamed, where e = ef+I IS taken mto account.
Beyond this state. the system move.§1nto the mechanism state under comblned stress of bendtng and tension, and n - 6

IS expressed by a curve toward POlllt W. whICh IS the prevIOUs load-reversal point In the tension range. The SF state
of the midsectIon IS denoted as Case 11m the Table. (If the contraction is ancreased more and more beyond state(J.l, ftange
2 may yield in tension, arid the stress state of the midsection may be expressed as Case V (Table I). However, an this state
the magmtude of the nondJmenslonai axaal dISplacement 161 IS more than twenty and IS not realistic. Anotherassumptlon­
ftaqe 2 always remains elastic except for CaseJV- IS adopted ID addttion ~ tl!Jl.se already stated 1ft SectIon 2}

When the loadlDg directIOn IS reve&ed at state (J), the bar behaves elastically (Q}-{J», and the plastiC stram of ftange
I IS obtained by substitllting n= n Into eqn ~)

If the tenslOR force IS Increased beyond state (J), ftange 2 dnd the straIght selllllents YIeld J!I.. teJ1llOA..at slate Q). and
the bar becomes strailht. Afurther ancrease causes the n - 6 relationshIp to trace the traiectry W-UJ-U>. eand kare ex­
pressed as Case IV (Table I). and eR IS obtained by eqn (IOc)

Under alternatgy repelted axialloadinl WIth constant dIsplacement ~ltJuIe between sO and S®, the lateral deftectlon
vanIshes at state CD at each cycle. and the hysteresIs loop stabllizes at the second cycle If loadilIg direction is reversed
from the~ress state of Case V. after extremely Increaslftg the contractIon, the resullJallateral detection does not vanish
at state W. and the hystereSIs loop under constant displacement amplitude detenorates with the increase of the toadmg
cycle


